
RMB Consulting
Where innovation and execution go hand in hand

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

Nigel Jones

In Praise of the C
Preprocessor’s #error Directive

One of the least used but potentially most useful C preprocessor directives is #error. Here’s a look at a couple of clever uses for
#error that have proven invaluable in embedded software development.

#error is an ANSI-specified feature of the C preprocessor (cpp). Its syntax is very straightforward:

#error <writer supplied error message>

The <writer supplied error message> can consist of any printable text. You don’t even have to enclose the text in quotes.
(Technically, the message is optional–though it rarely makes sense to omit it.)

When the C preprocessor encounters a #error statement, it causes compilation to terminate and the writer-supplied error
message to be printed to stderr. A typical error message from a C compiler looks like this:

Filename(line_number): Error!
Ennnn: <writer supplied error message>

where Filename is the source file name, line_number is the line number where the #error statement is located, and Ennnn is a
compiler-specific error number. Thus, the #error message is basically indistinguishable from ordinary compiler error messages.

“Wait a minute,” you might say. “I spend enough time trying to get code to compile and now he wants me to do something
that causes more compiler errors?” Absolutely! The essential point is that code that compiles but is incorrect is worse than
useless. I’ve found three general areas in which this problem can arise and #error can help. Read on and see if you agree with
me.

Incomplete code
I tend to code using a step-wise refinement approach, so it isn’t unusual during development for me to have functions that do
nothing, for loops that lack a body, and so forth. Consequently, I often have files that are compilable but lack some essential
functionality. Working this way is fine, until I’m pulled off to work on something else (an occupational hazard of being in
the consulting business). Because these distractions can occasionally run into weeks, I sometimes return to the job with my
memory a little hazy about what I haven’t completed. In the worst-case scenario (which has occurred), I perform a make, which
runs happily, and then I attempt to use the code. The program, of course, crashes and burns, and I’m left wondering where to
start.

In the past, I’d comment the file to note what had been done and what was still needed. However, I found this approach to be
rather weak because I then had to read all my comments (and I comment heavily) in order to find what I was looking for. Now
I simply enter something like the following in an appropriate place in the file:

#error *** Nigel - Function incomplete. Fix before using ***

Thus, if I forget that I haven’t done the necessary work, an inadvertent attempt to use the file will result in just about the most
meaningful compiler message I’ll ever receive. Furthermore, it saves me from having to wade through pages of comments,
trying to find what work I haven’t finished.

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 2

Compiler-dependent code
As much as I strive to write portable code, I often find myself having to trade off performance for portability – and in
the embedded world, performance tends to win. However, what happens if a few years later I reuse some code without
remembering that the code has compiler-specific peculiarities? The result is a much longer debug session than is necessary. But
a judicious #error statement can prevent a lot of grief. A couple of examples may help.

Example 1

Some floating-point code requires at least 12 digits of resolution to return the correct results. Accordingly, the various variables
are defined as type long double. But ISO C only requires that a long double have 10 digits of resolution. Thus on certain
machines, a long double may be inadequate to do the job. To protect against this, I would include the following:

#include <float.h>
#if (LDBL_DIG < 12)
 #error *** long doubles need 12 digit resolution.
 Do not use this compiler! ***
#endif

This approach works by examining the value of an ANSI-mandated constant found in float.h.

Example 2

An amazing amount of code makes invalid assumptions about the underlying size of the various integer types. If you have code
that has to use an int (as opposed to a user-specified data type such as int16), and the code assumes that an int is 16 bits, you
can do the following:

#include <limits.h>
#if (INT_MAX != 32767)
 #error *** This file only works with 16-bit int.
 Do not use this compiler! ***
#endif

Again, this works by checking the value of an ANSI-mandated constant. This time the constant is found in the file limits.h.
This approach is a lot more useful than putting these limitations inside a big comment that someone may or may not read.
After all, you have to read the compiler error messages.

Conditionally-compiled code
Since conditionally compiled code seems to be a necessary evil in embedded programming, it’s common to find code sequences
such as the following:

#if defined OPT_1
 /* Do option_1 */
#else
 /* Do option_2 */
#endif

As it is written, this code means the following: if and only if OPT_1 is defined, we will do option_1; otherwise we’ll do
option_2. The problem with this code is that a user of the code doesn’t know (without explicitly examining the code) that
OPT_1 is a valid compiler switch. Instead, the naïve user will simply compile the code without defining OPT_1 and get the
alternate implementation, irrespective of whether that is what’s required or not. A more considerate coder might be aware of
this problem, and instead do the following:

#if defined OPT_1
 /* Do option 1 */
#elif defined OPT_2
 /* Do option 2*/
#endif

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 3

In this case, failure to define either OPT_1 or OPT_2 will typically result in an obscure compiler error at a point later in the
code. The user of this code will then be stuck with trying to work out what must be done to get the module to compile. This is
where #error comes in. Consider the following code sequence:

#if defined OPT_1
 /* Do option_1 */
#elif defined OPT_2
 /* Do option_2 */
#else
 #error *** You must define one of OPT_1 or OPT_2 ***
#endif

Now the compilation fails, but at least it tells the user explicitly what to do to make the module compile. I know that if this
procedure had been adopted universally, I would have saved a lot of time over the years trying to reuse other people’s code.

So there you have it. Now tell me, don’t you agree that #error is a really useful part of the preprocessor, worthy of your frequent
use-and occasional praise?

This article was published in the September 1999 issue of Embedded Systems Programming. If you wish to cite the article in
your own work, you may find the following MLA-style information helpful:

Jones, Nigel. “In Praise of the #error Directive” Embedded Systems Programming, September 1999.

	error-Directive-1
	error-Directive-2
	error-Directive-3

