
RMB Consulting
Where innovation and execution go hand in hand

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

Nigel Jones

Efficient C Code for 8-bit
Microcontrollers

The 8051, 68HC11, and Microchip PIC are popular microcontrollers, but they aren’t necessarily easy to program. This article
shows how the use of ANSI C and compiler-specific constructs can help generate tighter code.

Getting the best possible performance out of the C compiler for an 8-bit microcontroller isn’t always easy. This article
concentrates mainly on those microcontrollers that were never designed to support high-level languages, such as members of
the 8051, 6800 (including the 68HC11), and Microchip PIC families of microcontrollers. Newer 8-bit machines such as the
Philips 8051XA and the Atmel Atmega series were designed explicitly to support high-level languages and, as such, may not
need all the techniques I describe here.

My emphasis is not on algorithm design, nor does it depend on a specific microcontroller or compiler. Rather, I describe
general techniques that are widely applicable. In many cases, these techniques work on larger machines, although you may then
decide that the trade-offs involved aren’t worthwhile.

Before jumping into the meat of the article, let’s briefly digress with a discussion of the philosophy involved. The
microcontrollers I’ve named are popular for reasons of size, price, power consumption, peripheral mix, and so on. Notice that
“ease of programming” is conspicuously missing from this list. Traditionally, these microcontrollers have been programmed in
assembly language. In the last few years, many vendors have recognized the desire of users to increase their productivity, and
have introduced C compilers for these machines—many of which are extremely good. However, it’s important to remember
that no matter how good the compiler, the underlying hardware has severe limitations. Thus, to write efficient C for these
targets, it’s essential that we be aware of what the compiler can do easily and what requires compiler heroics. In presenting these
techniques, I have taken the attitude that I wish to solve a problem by programming a microcontroller, and that the C compiler
is a tool, no different from an oscilloscope. In other words, C is a means to an end, and not an end in itself. As a result, many
of my comments will seem heretical to the high-level language purists out there.

ANSI C
The first step to writing a realistic C program for an 8-bit computer is to dispense with the concept of writing 100% ANSI
code. This concession is necessary because I don’t believe it’s possible, or even desirable, to write 100% ANSI code for any
embedded system, particularly for 8-bit systems.

Some characteristics of 8-bit systems that prevent ANSI compliance are:

Embedded software interacts with hardware, yet ANSI C provides extremely crude tools for addressing registers at fixed •
memory locations

All nontrivial systems use interrupts, yet ANSI C doesn’t have a standard way of coding interrupt service routines•

ANSI C has various type promotion rules that are absolute performance killers on an 8-bit computer•

Many older microcontrollers feature multiple memory banks, which have to be hardware swapped in order to correctly •
address the desired variable

Many microcontrollers have no hardware support for C’s stack (i.e., they lack a stack pointer)•

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 2

This is not to say that I advocate junking the entire ANSI C standard. I take the view that one should use standard C as much
as possible. However, when it interferes with solving the problem at hand, do not hesitate to bypass it. Does this interfere with
making code portable and reusable? Absolutely. But portable, reusable code that doesn’t get the job done isn’t much use.

I’ve also noticed that every compiler has a switch that strictly enforces ANSI C and disables all compiler extensions. I suspect
that this is done purely so that a vendor can claim ANSI compliance, even though this feature is practically useless. I have
also observed that vendors who strongly emphasize their ANSI compliance often produce inferior code (perhaps because
the compiler has a generic front end that is shared among multiple targets) when compared to vendors that emphasize their
performance and language extensions.

Enough about the ANSI standard. Let’s now discuss specific actions that can be taken to make your code run efficiently on an
8-bit microcontroller. The most important, by far, is the choice of data types.

Data types
Knowledge of the size of the underlying data types, together with careful data type selection, is essential for writing efficient
code on eight-bit machines. Furthermore, understanding how the compiler handles expressions involving your data types can
make a considerable difference in your coding decisions. These topics are discussed in the following paragraphs.

Data type size

In the embedded world, knowing the underlying representation of the various data types is usually essential. I have seen many
discussions on this topic, none of which has been particularly satisfactory or portable. My preferred solution is to include a file,
<types.h>, an excerpt from which appears below:

#ifndef TYPES_H
#define TYPES_H
#include <limits.h>
/* Assign a compiler-specific data type to BOOLEAN */
#ifdef _C51_
typedef bit BOOLEAN
#define FALSE 0
#define TRUE 1
#else
typedef enum {FALSE=0, TRUE=1} BOOLEAN;
#endif

/* Assign an 8-bit signed type to CHAR */
#if (SCHAR_MAX == 127)
typedef char CHAR;
#elif (SCHAR_MAX == 255)
/* Implies that by default chars are unsigned */
typedef signed char CHAR;
#else
/* No eight bit data types */
#error Warning! Intrinsic data type char is not eight bits
#endif

/* Rest of the file goes here */
#endif

The concept is quite simple. The file types.h includes the ANSI-required file limits.h. It then explicitly tests each of the
predefined data types for the smallest type that matches signed and unsigned 1-, 8-, 16-, and 32-bit variables. The result is
that my data type UCHAR is guaranteed to be an 8-bit unsigned variable, INT is guaranteed to be a 16-bit signed variable,
and so forth. In this manner, the following data types are defined: BOOLEAN, CHAR, UCHAR, INT, UINT, LONG, and
ULONG.

Several points are worth making:

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 3

The definition of the BOOLEAN data type is difficult. Many 8-bit processors directly support single-bit data types, and I •
wish to take advantage of this if possible. Unfortunately, since ANSI is silent on this topic, it’s necessary to use compiler-
specific code

Some compilers define a char as an unsigned quantity, such that if a signed 8-bit variable is required, one has to use the •
unusual declaration signed char

Note the use of the #error directive to force a compile error if I can’t achieve my goal of having unambiguous definitions of •
BOOLEAN, UCHAR, CHAR, UINT, INT, ULONG, and LONG

In all of the following examples, the types BOOLEAN, UCHAR, and so on will be used to specify unambiguously the size of
the variable being used.

Data type selection

There are two basic guidelines for data type selection on 8-bit processors:

Use the smallest possible type to get the job done•

Use an unsigned type whenever possible•

The reasons for this are simply that many 8-bit processors have no direct support for manipulating anything more complicated
than an unsigned 8-bit value. However, unlike large machines, eight-bitters often provide direct support for manipulation of
bits. Thus, the fastest integer types to use on an 8-bit CPU are BOOLEAN and UCHAR. Consider the typical C code:

int is_positive(int a)
{
(a>=0) ? return(1) : return (0);
}

The better implementation is:

BOOLEAN is_positive(int a)
{
(a>=0) ? return(TRUE) : return (FALSE);
}

On an 8-bit processor we can get a large performance boost by using the BOOLEAN return type because the compiler need
only return a bit (typically via the carry flag), vs. a 16-bit value stored in registers. The code is also more readable.

Let’s take a look at a second example. Consider the following code fragment that is littered throughout most C programs:

int j;
for (j = 0; j < 10; j++)
{
…

}

This fragment produces horribly inefficient code on an 8051. A better way to code this for 8-bit CPUs is as follows:

UCHAR j;
for (j = 0; j < 10; j++)
{
…
}

The result is a huge boost in performance because we are now using an 8-bit unsigned variable (that can be manipulated
directly) vs. a signed 16-bit quantity that will typically be handled by a library call. Note also that there is generally no penalty
for coding this way on most big CPUs (with the exception of some RISC processors). Furthermore, a strong case exists for
doing this on all machines. Those of you who know Pascal are aware that when declaring an integer variable, it’s possible, and

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 4

normally desirable, to specify the allowable range that the integer can take on. For example:

type loopindex = 0..9;
var j loopindex;

Upon rereading the code later, you’ll have additional information concerning the intended use of the variable. For our classical
C code above, the variable int j may take on values of at least –32768 to +32767. For the case in which we have UCHAR j,
we inform others that this variable is intended to have strictly positive values over a restricted range. Thus, this simple change
manages to combine tighter code with improved maintainability—not a bad combination.

Enumerated types

The use of enumerated data types was a welcome addition to ANSI C. Unfortunately, the ANSI standard calls for the
underlying data type of an enum to be an int. Thus, on many compilers, declaration of an enumerated type forces the compiler
to generate 16-bit signed code, which, as I’ve mentioned, is extremely inefficient on an 8-bit CPU. This is unfortunate,
especially as I have never seen an enumerated type list go over a few dozen elements; it could usually easily be fit in a UCHAR.
To overcome this limitation, several options exist, none of which is palatable:

Check your compiler documentation, which may show you how to specify via a (compiler-specific) command line switch •
that enumerated types be put into the smallest possible data type

Accept the inefficiency as an acceptable trade-off for readability•

Dispense with enumerated types and resort to lists of manifest constants•

Integer promotion
The integer promotion rules of ANSI C are probably the most heinous crime committed against those of us who labor in the
8-bit world. I have no doubt that the standard is quite detailed in this area. However, the two most important rules in practice
are the following:

Any expression involving integral types smaller than an int have all the variables automatically promoted to int•

Any function call that passes an integral type smaller than an int automatically promotes the variable to an int, if the •
function is not prototyped

The key word here is automatically. Unless you take explicit steps, the compiler is unlikely to do what you want. Consider the
following code fragment:

CHAR a,b,res;
…
res = a+b;

The compiler will promote a and b to integers, perform a 16-bit addition, and then assign the lower eight bits of the result
to res. Several ways around this problem exist. First, many compiler vendors have seen the light, and allow you to disable the
ANSI automatic integer promotion rules. However, you’re then stuck with compiler-dependant code.

Alternatively, you can resort to very clumsy casting, and hope that the compiler’s optimizer works out what you really want to
do. The extent of the casting required seems to vary among compiler vendors. As a result, I tend to go overboard:

res = (CHAR)((CHAR)a + (CHAR)b);

With complex expressions, the result can be hideous.

More integer promotion rules

A third integer promotion rule that is often overlooked concerns expressions that contain both signed and unsigned integers.
In this case, signed integers are promoted to unsigned integers. Although this makes sense, it can present problems in our 8-bit

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 5

environment, where the unsigned integer rules. For example:

void demo(void)
{
UINT a = 6;
INT b = -20;
(a+b > 6) ?
puts(“More than 6”) :
puts(“Less than or equal to 6”);
}

If you run this program, you may be surprised to find that the output is “More than 6.” This problem is a very subtle one,
and is even more difficult to detect when you use enumerated data types or other defined data types that evaluate to a signed
integer data type. Using the result of a function call in an expression is also problematic.

The good news is that in the embedded world, the percentage of integral data types that must be signed is quite low, thus the
potential number of expressions in which mixed types occur is also low. The time to be cautious is when reusing code that was
written by someone who didn’t believe in unsigned data types.

Floating-point types
Floating-point arithmetic is required in many applications. However, since we’re normally dealing with real-world data whose
representation rarely goes beyond 16 bits (a 20-bit A/D converter on an 8-bit machine is rare), the requirements for double-
precision arithmetic are tenuous, except in the strangest of circumstances.

Again, the ANSI people have handicapped us by requiring that any floating-point expression be promoted to double before
execution. Fortunately, a lot of compiler vendors have done the sensible thing, and simply defined doubles to be the same as
floats, so that this promotion is benign. Be warned, however, that many reputable vendors have made a virtue out of providing
a genuine double-precision data type. The result is that unless you take great care, you may end up computing values with
ridiculous levels of precision, and paying the price computationally. If you’re considering a compiler that offers double-
precision math, study the documentation carefully to ensure that there is some way of disabling the automatic promotion of
float to dobuble. If there isn’t, look for another compiler.

While we’re on this topic, I’d like to air a pet peeve of mine. Years ago, before decent compiler support for 8-bit processors
was available, I would code in assembly language using a bespoke floating-point library. This library was always implemented
using 24-bit floats, with a long float consuming four bytes. I found that this was more than adequate for the real world. I’ve
yet to find a compiler vendor that offers this as an option. My guess is that the marketing people insisted on a true ANSI
floating-point library, the real world be damned. As a result, I can calculate hyperbolic sines on my 68HC11, but I can’t get the
performance boost that comes from using just a 24-bit float.

Having moaned about the ANSI-induced problems, let’s turn to an area in which ANSI has helped a lot. I’m referring to the
keywords const and volatile, which, together with static, allow the production of better code.

C’s static keyword
The keywords static, volatile, and const together allow one to write not only better code (in the sense of information hiding
and so forth) but also tighter code.

Static variables

When applied to variables, static has two primary functions. The first and most common use is to declare a variable that doesn’t
disappear between successive invocations of a function. For example:

void func(void) { static UCHAR state = 0; switch (state) { … } }

In this case, the use of static is mandatory for the code to work.

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 6

The second use of static is to limit the scope of a variable. A variable that is declared static at the module level is accessible by
all functions in the module, but by no one else. This is important because it allows us to gain all the performance benefits of
global variables, while severely limiting the well-known problems of globals. As a result, if I have a data structure which must
be accessed frequently by a number of functions, I’ll put all of the functions into the same module and declare the structure
static. Then all of the functions that need to can access the data without going through the overhead of an access function,
while at the same time, code that has no business knowing about the data structure is prevented from accessing it. This
technique is an admission that directly accessible variables are essential to gaining adequate performance on small machines.

A few other potential benefits can result from declaring module level variables static (as opposed to leaving them global).
Static variables, by definition, may only be accessed by a specific set of functions. Consequently, the compiler and linker are
able to make sensible choices concerning the placement of the variables in memory. For instance, with static variables, the
compiler/linker may choose to place all of the static variables in a module in contiguous locations, thus increasing the chances
of various optimizations, such as pointers being simply incremented or decremented instead of being reloaded. In contrast,
global variables are often placed in memory locations that are designed to optimize the compiler’s hashing algorithms, thus
eliminating potential optimizations.

Static functions

A static function is only callable by other functions within its module. While the use of static functions is good structured
programming practice, you may also be surprised to learn that static functions can result in smaller and/or faster code. This
is possible because the compiler knows at compile time exactly what functions can call a given static function. Therefore, the
relative memory locations of functions can be adjusted such that the static functions may be called using a short version of
the call or jump instruction. For instance, the 8051 supports both an ACALL and an LCALL op code. ACALL is a two-byte
instruction, and is limited to a 2K address block. LCALL is a three-byte instruction that can access the full 8051 address space.
Thus, use of static functions gives the compiler the opportunity to use an ACALL where otherwise it might use an LCALL.

The potential improvements are even better, in which the compiler is smart enough to replace calls with jumps. For example:

void fa(void) { … fb(); } static void fb(void) { … }

In this case, because function fb() is called on the last line of function fa(), the compiler can replace the call with a jump. Since
fb() is static, and the compiler knows its exact distance from fa(), the compiler can use the shortest jump instruction. For the
Dallas DS80C320, this is an SJMP instruction (two bytes, three cycles) vs. an LCALL (three bytes, four cycles).

On a recent project, rigorous application of the static modifier to functions resulted in about a 1% reduction in code size.
When your ROM is 95% full, a 1% reduction is most welcome!

A final point concerning static variables and debugging: for reasons that I do not fully understand, with many in-circuit
emulators that support source-level debug, static variables and/or automatic variables in static functions are not always
accessible symbolically. As a result, I tend to use the following construct in my project-wide include file:

#ifndef NDEBUG #define STATIC #else #define STATIC static #endif

I then use STATIC instead of static to define static variables, so that while in debug mode, I can guarantee symbolic access to
the variables.

C’s volatile keyword
A volatile variable is one whose value may be changed outside the normal program flow. In embedded systems, the two main
ways that this can happen is either via an interrupt service routine, or as a consequence of hardware action (for instance, a
serial port status register updates as a result of a character being received via the serial port). Most programmers are aware
that the compiler will not attempt to optimize a volatile register, but rather will reload it every time. The case to watch out
for is when compiler vendors offer extensions for accessing absolute memory locations, such as hardware registers. Sometimes
these extensions have either an implicit or an explicit declaration of volatility and sometimes they don’t. The point is to fully

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 7

understand what the compiler is doing. If you do not, you may end up accessing a volatile variable when you don’t want to
and vice versa. For example, the popular 8051 compiler from Keil offers two ways of accessing a specific memory location. The
first uses a language extension, _at_, to specify where a variable should be located. The second method uses a macro such as
XBYTE[] to dereference a pointer. The “volatility” of these two is different. For example:

UCHAR status_register _at_ 0xE000;

This method is simply a much more convenient way of accessing a specific memory location. However, volatile is not implied
here. Thus, the following code is unlikely to work:

while (status_register); /* Wait for status register to clear */

Instead, one needs to use the following declaration:

volatile UCHAR status_register _at_ 0xE000;

The second method that Keil offers is the use of macros, such as the XBYTE macro, as in:

status_register = XBYTE[0xE000];

Here, however, examination of the XBYTE macro shows that volatile is assumed:

#define XBYTE ((unsigned char volatile xdata*) 0)

(The xdata is a memory space qualifier, which isn’t relevant to the discussion here and may be ignored.)

Thus, the code:

while (status_register); /* Wait for status register to clear */

will work as you would expect in this case. However, in the case in which you wish to access a variable at a specific location that
is not volatile, the use of the XBYTE macro is potentially inefficient.

C’s const keyword
The keyword const, which is by the way the most badly named keyword in the C language, does not mean “constant”! Rather,
it means “read only”. In embedded systems, there is a huge difference, which will become clear.

Many texts recommend that instead of using manifest constants, one should use a const variable. For instance:

const UCHAR nos_atod_channels = 8;

instead of

#define NOS_ATOD_CHANNELS 8

The rationale for this approach is that inside a debugger, you can examine a const variable (since it should appear in the symbol
table), whereas a manifest constant isn’t accessible. Unfortunately, on many eight-bit machines you’ll pay a significant price for
this benefit. The two primary costs are:

The compiler creates a genuine variable in RAM to hold the variable. On RAM-limited systems, this can be a significant •
penalty

Some compilers, recognizing that the variable is const, will store the variable in ROM. However, the variable is still treated •
as a variable and is accessed as such, typically using some form of indexed addressing. Compared to immediate addressing,
this method is normally much slower

I recommend that you eschew the use of const variables on 8-bit micros, except in the following circumstances.

const function parameters

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 8

Declaring function parameters const whenever possible not only makes for better, safer code, but also has the potential for
generating tighter code. This is best illustrated by an example:

void output_string(CHAR *cp) { while (*cp) putchar(*cp++); } void demo(void) { char *str =
“Hello, world”; output_string(str); if (‘H’ == str[0]) { some_function(); } }

In this case, there is no guarantee that output_string() will not modify our original string, str. As a result, the compiler is forced
to perform the test in demo(). If instead, output_string is correctly declared as follows:

void output_string(const char *cp) { while (*cp) putchar(*cp++); }

then the compiler knows that output_string() cannot modify the original string str, and as a result it can dispense with the
test and invoke some_function() unconditionally. Thus, I strongly recommend liberal use of the const modifier on function
parameters.

const volatile variables

We now come to an esoteric topic. Can a variable be both const and volatile, and if so, what does that mean and how might
you use it? The answer is, of course, yes (why else would it have been asked?), and it should be used on any memory location
that can change unexpectedly (hence the need for the volatile qualifier) and that is read-only (hence the const). The most
obvious example of this is a hardware status register. Thus, returning to the status_register example above, a better declaration
for our status register is:

const volatile UCHAR status_register _at_ 0xE000;

Typed data pointers
We now come to another area in which a major trade-off exists between writing portable code and writing efficient code—
namely the use of typed data pointers , which are pointers that are constrained in some way with respect to the type and/or
size of memory that they can access. For example, those of you who have programmed the x86 architecture are undoubtedly
familiar with the concept of using the __near and __far modifiers on pointers. These are examples of typed data pointers.
Often the modifier is implied, based on the memory model being used. Sometimes the modifier is mandatory, such as in the
prototype of an interrupt handler:

void __interrupt __far cntr_int7();

The requirement for the near and far modifiers comes about from the segmented x86 architecture. In the embedded eight-
bit world, the situation is often far more complex. Microcontrollers typically require typed data pointers because they offer
a number of disparate memory spaces, each of which may require the use of different addressing modes. The worst offender
is the 8051 family, with at least five different memory spaces. However, even the 68HC11 has at least two different memory
spaces (zero page and everything else), together with the EEPROM, pointers to which typically require an address space
modifier.

The most obvious characteristic of typed data pointers is their inherent lack of portability. They also tend to lead to some
horrific data declarations. For example, consider the following declaration from the Whitesmiths 68HC11 compiler:

@dir INT * @dir zpage_ptr_to_zero_page;

This declares a pointer to an INT. However, both the pointer and its object reside in the zero page (as indicated by the
Whitesmith extension, @dir). If you were to add a const qualifier or two, such as:

@dir const INT * @dir const constant_zpage_ptr_to_constant_zero_page_data;

then the declarations can quickly become quite intimidating. Consequently, you may be tempted to simply ignore the use of
typed pointers. Indeed, coding an application on a 68HC11 without ever using a typed data pointer is quite possible. However,
by doing so the application’s performance will take an enormous hit because the zero page offers considerably faster access than

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 9

the rest of memory.

This area is so critical to performance that all hope of portability is lost. For example, consider two leading 8051 compiler
vendors, Keil and Tasking. Keil supports a three-byte generic pointer that may be used to point to any of the 8051 address
spaces, together with typed data pointers that are strictly limited to a specific data space. Keil strongly recommends the use
of typed data pointers, but doesn’t require it. By contrast, Tasking takes the attitude that generic pointers are so horribly
inefficient that it mandates the use of typed pointers (an argument to which I am extremely sympathetic).

To get a feel for the magnitude of the difference, consider the following code, intended for use on an 8051:

void main(void) { UCHAR array[16]; /* array is in the data space by default */ UCHAR data * ptr
= array; /* Note use of data qualifier */ UCHAR i; for (i = 0; i < 16; i++) *ptr++ = i; }

Using a generic pointer, this code requires 571 cycles and 88 bytes. Using a typed data pointer, it needs just 196 cycles and 52
bytes. (The memory sizes include the startup code, and the execution times are just those for executing main()).

With these sorts of performance increases, I recommend always using explicitly typed pointers, and paying the price in loss of
portability and readability.

Implementing an assert() macro
The assert() macro is commonly used on PC platforms, but almost never used on small embedded systems. There are several
reasons for this:

Many reputable compiler vendors don’t bother to supply an assert macro•

Vendors that do supply the macro often provide it in an almost useless form•

Most embedded systems don’t support a stderr to which the error may be printed•

These limitations notwithstanding, it’s possible to gain the benefits of the assert() macro on even the smallest systems if you’re
prepared to take a pragmatic approach.

Before I discuss possible implementations, mentioning why assert() is important (even in embedded systems) is worthwhile.
Over the years, I’ve built up a library of drivers to various pieces of hardware such as LCDs, ADCs, and so on. These drivers
typically require various parameters to be passed to them. For example, an LCD driver that displays a text string on a panel
would expect the row, the column, a pointer to the string, and perhaps an attribute parameter. When writing the driver, it is
obviously important that the passed parameters are correct. One way of ensuring this is to include code such as this:

void Lcd_Write_Str(UCHAR row, UCHAR column, CHAR *str, UCHAR attr) { row &= MAX_ROW; column
&= MAX_COLUMN; attr &= ALLOWABLE_ATTRIBUTES; if (NULL == str) return; /* The real work of the
driver goes here */ }

This code clips the parameters to allowable ranges, checks for a null pointer assignment, and so on. However, on a functioning
system, executing this code every time the driver is invoked is extremely costly. But if the code is discarded, reuse of the driver
in another project becomes a lot more difficult because errors in the driver invocation are tougher to detect.

The preferred solution is the liberal use of an assert macro. For example:

void Lcd_Write_Str(UCHAR row, UCHAR column, CHAR *str, UCHAR attr) { assert (row < MAX_ROW);
assert (column < MAX_COLUMN); assert (attr < ALLOWABLE_ATTRIBUTES); assert (str != NULL); /*
The real work of the driver goes here */ }

This is a practical approach if you’re prepared to redefine the assert macro. The level of resources in your system will control the
sophistication of this macro, as shown in the examples below.

Assert 1

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 10

This example assumes that you have no spare RAM, no spare port pins, and virtually no ROM to spare. In this case, assert.h
becomes:

#ifndef assert_h #define assert_h #ifndef NDEBUG #define assert(expr) \ if (expr) {\ while (1);\
} #else #define assert(expr) #endif #endif

Here, if the assertion fails, we simply enter an infinite loop. The only utility of this case is that, assuming you’re running a
debug session on an ICE, you will eventually notice that the system is no longer running. In which case, breaking the emulator
and examining the program counter will give you a good indication of which assertion failed. As a possible refinement, if your
system is interrupt-driven, inserting a “disable all interrupts” command prior to the while(1) may be necessary, just to ensure
that the system’s failure is obvious.

Assert 2

This case is the same as assert #1, except that in example #2 you have a spare port pin on the microcontroller to which an error
LED is attached. This LED is lit if an error occurs, thus giving you instant feedback that an assertion has failed. Assert.h now
becomes:

#ifndef assert_h #define assert_h #define ERROR_LED_ON() /* Put expression for turning LED on
here */ #define INTERRUPTS_OFF() /* Put expression for interrupts off here */ #ifndef NDEBUG
#define assert(expr) \ if (expr) {\ ERROR_LED_ON();\ INTERRUPTS_OFF();\ while (1);\ } #else
#define assert(expr) #endif #endif

Assert 3

This example builds on assert #2. But in this case, we have sufficient RAM to define an error message buffer, into which the
assert macro can sprintf() the exact failure. While debugging on an ICE, if a permanent watch point is associated with this
buffer, then breaking the ICE will give you instant information on where the failure occurred. Assert.h for this case becomes:

#ifndef assert_h #define assert_h #define ERROR_LED_ON() /* Put expression for turning LED on
here */ #define INTERRUPTS_OFF()/* Put expression for interrupts off here */ #ifndef NDEBUG
extern char error_buf[80]; #define assert(expr) \ if (expr) {\ ERROR_LED_ON();\ INTERRUPTS_
OFF();\ sprintf(error_buf,”Assert failed: “ #expr “ (file %s line %d)\n”, __FILE__, (int) __
LINE__);\ while (1);\ } #else #define assert(expr) #endif #endif

Obviously, this requires that you define error_buffer[80] somewhere else in your code.

I don’t expect that these three examples will cover everyone’s needs. Rather, I hope they give you some ideas on how to create
your own assert macros to get the maximum debugging information within the constraints of your embedded system.

Heretical comments
So far, all of my suggestions have been about actively doing things to improve the code quality. Now, let’s address those areas
of the C language that should be avoided, except in highly unusual circumstances. For some of you, the suggestions that follow
will border on heresy.

Recursion

Recursion is a wonderful technique that solves certain problems in an elegant manner. It has no place on an eight-bit
microcontroller. The reasons for this are quite simple:

Recursion relies on a stack-based approach to passing variables. Many small machines have no hardware support for a •
stack. Consequently, either the compiler will simply refuse to support reentrancy, or else it will resort to a software stack in
order to solve the problem, resulting in dreadful code quality

Recursion relies on a “virtual stack” that purportedly has no real memory constraints. How many small machines can •
realistically support virtual memory?

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 11

If you find yourself using recursion on a small machine, I respectfully suggest that you are either (a) doing something really
weird, or (b) you don’t understand the sum total of the constraints with which you’re working. If it is the former, then please
contact me, as I will be fascinated to see what you are doing.

Variable length argument lists

You should avoid variable length argument lists because they too rely on a stack-based approach to passing variables. What
about sprintf() and its cousins, you all cry? Well, if possible, you should consider avoiding the use of these library functions.
The reasons for this are as follows:

If you use sprintf(), take a look at the linker output and see how much library code it pulls in. On one of my compilers, •
sprintf(), without floating-point support, consumes about 1K. If you’re using a masked micro with a code space of 8K, this
penalty is huge

On some compilers, use of sprintf() implies the use of a floating-point library, even if you never use the library. •
Consequently, the code penalty quickly becomes enormous

If the compiler doesn’t support a stack, but rather passes variables in registers or fixed memory locations, then use of •
variable length argument functions forces the compiler to reserve a healthy block of memory simply to provide space
for variables that you may decide to use. For instance, if your compiler vendor assumes that the maximum number of
arguments you can pass is 10, then the compiler will reserve 40 bytes (assuming four bytes per longest intrinsic data type)

Fortunately, many vendors are aware of these issues and have taken steps to mitigate the effects of using sprintf().
Notwithstanding these actions, taking a close look at your code is still worthwhile. For instance, writing my own wrstr() and
wrint() functions (to ouput strings and ints respectively) generated half the code of using sprintf. Thus, if all you need to
format are strings and base 10 integers, then the roll-your-own approach is beneficial (while still being portable).

Dynamic memory allocation

When you’re programming an application for a PC, using dynamic memory allocation makes sense. The characteristics of PCs
that permit and/or require dynamic memory allocation include:

When writing an application, you may not know how much memory will be available. Dynamic allocation provides a way •
of gracefully handling this problem

The PC has an operating system, which provides memory allocation services•

The PC has a user interface, such that if an application runs out of memory, it can at least tell the user and attempt a •
relatively graceful shutdown

In contrast, small embedded systems typically have none of these characteristics. Therefore, I think that the use of dynamic
memory allocation on these targets is silly. First, the amount of memory available is fixed, and is typically known at design
time. Thus static allocation of all the required and/or available memory may be done at compile time.

Second, the execution time overhead of malloc(), free(), and so on is not only quite high, but also variable, depending on the
degree of memory fragmentation.

Third, use of malloc(), free(), and so on consumes valuable EPROM space. And lastly, dynamic memory allocation is fraught
with danger (witness the series from P.J. Plauger on garbage collection in the January 1998, March 1998, and April 1998 issues
of Embedded Systems Programming).

Consequently, I strongly recommend that you not use dynamic memory allocation on small systems.

Final thoughts
I have attempted to illustrate how judicious use of both ANSI constructs and compiler-specific constructs can help generate

RMB Consulting, Inc. • Frederick, MD 21702 USA • +1 301-551-5138 • www.rmbconsulting.us

page 12

tighter code on small microcontrollers. Often, though, these improvements come at the expense of portability and/or
readability. If you are in the fortunate position of being able to use less efficient code, then you can ignore these suggestions. If,
however, you are severely resource-constrained, then give a few of these techniques a try. I think you’ll be pleasantly surprised.

This article was published in the November 1998 issue of Embedded Systems Programming. If you wish to cite the article in
your own work, you may find the following MLA-style information helpful:

Jones, Nigel. “Efficient C Code for Eight-Bit MCUs” Embedded Systems Programming, November 1998.

	code-For-8-Bit-Microcontrollers-1
	code-For-8-Bit-Microcontrollers-2
	code-For-8-Bit-Microcontrollers-3
	code-For-8-Bit-Microcontrollers-4
	code-For-8-Bit-Microcontrollers-5
	code-For-8-Bit-Microcontrollers-6
	code-For-8-Bit-Microcontrollers-7
	code-For-8-Bit-Microcontrollers-8
	code-For-8-Bit-Microcontrollers-9
	code-For-8-Bit-Microcontrollers-10
	code-For-8-Bit-Microcontrollers-11
	code-For-8-Bit-Microcontrollers-12

